|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM307308421 |
003 |
DE-627 |
005 |
20240229162629.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2020.2975711
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM307308421
|
035 |
|
|
|a (NLM)32142430
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Zhengtian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Outdoor RGBD Instance Segmentation with Residual Regretting Learning
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Indoor semantic segmentation with RGBD input has received decent progress recently, but studies on instance-level objects in outdoor scenarios meet challenges due to the ambiguity in the acquired outdoor depth map. To tackle this problem, we proposed a residual regretting mechanism, incorporated into current flexible, general and solid instance segmentation framework Mask R-CNN in an end-to-end manner. Specifically, regretting cascade is designed to gradually refine and fully unearth useful information in depth maps, acting in a filtering and backup way. Additionally, embedded by a novel residual connection structure, the regretting module combines RGB and depth branches with pixel-level mask robustly. Extensive experiments on the challenging Cityscapes and KITTI dataset manifest the effectiveness of our residual regretting scheme for handling outdoor depth map. Our approach achieves state-of-the-art performance on RGBD instance segmentation, with 13.4% relative improvement over Mask R-CNN on Cityscapes by depth cue
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Shu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Jianping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Cewu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2020) vom: 27. Feb.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2020
|g day:27
|g month:02
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2020.2975711
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2020
|b 27
|c 02
|