Outdoor RGBD Instance Segmentation with Residual Regretting Learning

Indoor semantic segmentation with RGBD input has received decent progress recently, but studies on instance-level objects in outdoor scenarios meet challenges due to the ambiguity in the acquired outdoor depth map. To tackle this problem, we proposed a residual regretting mechanism, incorporated int...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 27. Feb.
1. Verfasser: Xu, Zhengtian (VerfasserIn)
Weitere Verfasser: Liu, Shu, Shi, Jianping, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Indoor semantic segmentation with RGBD input has received decent progress recently, but studies on instance-level objects in outdoor scenarios meet challenges due to the ambiguity in the acquired outdoor depth map. To tackle this problem, we proposed a residual regretting mechanism, incorporated into current flexible, general and solid instance segmentation framework Mask R-CNN in an end-to-end manner. Specifically, regretting cascade is designed to gradually refine and fully unearth useful information in depth maps, acting in a filtering and backup way. Additionally, embedded by a novel residual connection structure, the regretting module combines RGB and depth branches with pixel-level mask robustly. Extensive experiments on the challenging Cityscapes and KITTI dataset manifest the effectiveness of our residual regretting scheme for handling outdoor depth map. Our approach achieves state-of-the-art performance on RGBD instance segmentation, with 13.4% relative improvement over Mask R-CNN on Cityscapes by depth cue
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2020.2975711