Outdoor RGBD Instance Segmentation with Residual Regretting Learning

Indoor semantic segmentation with RGBD input has received decent progress recently, but studies on instance-level objects in outdoor scenarios meet challenges due to the ambiguity in the acquired outdoor depth map. To tackle this problem, we proposed a residual regretting mechanism, incorporated int...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 27. Feb.
1. Verfasser: Xu, Zhengtian (VerfasserIn)
Weitere Verfasser: Liu, Shu, Shi, Jianping, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article