|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM306710293 |
003 |
DE-627 |
005 |
20231225123954.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201905295
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1022.xml
|
035 |
|
|
|a (DE-627)NLM306710293
|
035 |
|
|
|a (NLM)32077160
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Yang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Achieving Ultrahigh-Rate and High-Safety Li+ Storage Based on Interconnected Tunnel Structure in Micro-Size Niobium Tungsten Oxides
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Developing advanced high-rate electrode materials has been a crucial aspect for next-generation lithium ion batteries (LIBs). A conventional nanoarchitecturing strategy is suggested to improve the rate performance of materials but inevitably brings about compromise in volumetric energy density, cost, safety, and so on. Here, micro-size Nb14 W3 O44 is synthesized as a durable high-rate anode material based on a facile and scalable solution combustion method. Aberration-corrected scanning transmission electron microscopy reveals the existence of open and interconnected tunnels in the highly crystalline Nb14 W3 O44 , which ensures facile Li+ diffusion even within micro-size particles. In situ high-energy synchrotron XRD and XANES combined with Raman spectroscopy and computational simulations clearly reveal a single-phase solid-solution reaction with reversible cationic redox process occurring in the NWO framework due to the low-barrier Li+ intercalation. Therefore, the micro-size Nb14 W3 O44 exhibits durable and ultrahigh rate capability, i.e., ≈130 mAh g-1 at 10 C, after 4000 cycles. Most importantly, the micro-size Nb14 W3 O44 anode proves its highest practical applicability by the fabrication of a full cell incorporating with a high-safety LiFePO4 cathode. Such a battery shows a long calendar life of over 1000 cycles and an enhanced thermal stability, which is superior than the current commercial anodes such as Li4 Ti5 O12
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anode materials
|
650 |
|
4 |
|a high-rate electrode materials
|
650 |
|
4 |
|a high-safety
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a niobium tungsten oxides
|
700 |
1 |
|
|a Zhu, He
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Jinfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Geng, Hongbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yufei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Jinbao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Gen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xun-Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Cheng Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 12 vom: 04. März, Seite e1905295
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:12
|g day:04
|g month:03
|g pages:e1905295
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201905295
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 12
|b 04
|c 03
|h e1905295
|