Neural Image Compression for Gigapixel Histopathology Image Analysis

We propose Neural Image Compression (NIC), a two-step method to build convolutional neural networks for gigapixel image analysis solely using weak image-level labels. First, gigapixel images are compressed using a neural network trained in an unsupervised fashion, retaining high-level information wh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 2 vom: 01. Feb., Seite 567-578
1. Verfasser: Tellez, David (VerfasserIn)
Weitere Verfasser: Litjens, Geert, van der Laak, Jeroen, Ciompi, Francesco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM300526946
003 DE-627
005 20231225102721.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2936841  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300526946 
035 |a (NLM)31442971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tellez, David  |e verfasserin  |4 aut 
245 1 0 |a Neural Image Compression for Gigapixel Histopathology Image Analysis 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose Neural Image Compression (NIC), a two-step method to build convolutional neural networks for gigapixel image analysis solely using weak image-level labels. First, gigapixel images are compressed using a neural network trained in an unsupervised fashion, retaining high-level information while suppressing pixel-level noise. Second, a convolutional neural network (CNN) is trained on these compressed image representations to predict image-level labels, avoiding the need for fine-grained manual annotations. We compared several encoding strategies, namely reconstruction error minimization, contrastive training and adversarial feature learning, and evaluated NIC on a synthetic task and two public histopathology datasets. We found that NIC can exploit visual cues associated with image-level labels successfully, integrating both global and local visual information. Furthermore, we visualized the regions of the input gigapixel images where the CNN attended to, and confirmed that they overlapped with annotations from human experts 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Litjens, Geert  |e verfasserin  |4 aut 
700 1 |a van der Laak, Jeroen  |e verfasserin  |4 aut 
700 1 |a Ciompi, Francesco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 2 vom: 01. Feb., Seite 567-578  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:2  |g day:01  |g month:02  |g pages:567-578 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2936841  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 2  |b 01  |c 02  |h 567-578