A Two-Stage Outlier Filtering Framework for City-Scale Localization Using 3D SfM Point Clouds

Three-dimensional structure-based localization aims to estimate the six-DOF camera pose of a query image by means of feature matches against a 3D Structure-from-Motion (SfM) point cloud. For city-scale SfM point clouds with tens of millions of points, it becomes more and more difficult to disambigua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 10 vom: 14. Okt., Seite 4857-4869
1. Verfasser: Cheng, Wentao (VerfasserIn)
Weitere Verfasser: Chen, Kan, Lin, Weisi, Goesele, Michael, Zhang, Xinfeng, Zhang, Yabin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM296759988
003 DE-627
005 20250225071100.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2910662  |2 doi 
028 5 2 |a pubmed25n0989.xml 
035 |a (DE-627)NLM296759988 
035 |a (NLM)31056495 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Wentao  |e verfasserin  |4 aut 
245 1 2 |a A Two-Stage Outlier Filtering Framework for City-Scale Localization Using 3D SfM Point Clouds 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Three-dimensional structure-based localization aims to estimate the six-DOF camera pose of a query image by means of feature matches against a 3D Structure-from-Motion (SfM) point cloud. For city-scale SfM point clouds with tens of millions of points, it becomes more and more difficult to disambiguate matches. Therefore, a 3D structure-based localization method, which can efficiently handle matches with very large outlier ratios, is needed. We propose a two-stage outlier filtering framework for city-scale localization that leverages both visibility and geometry intrinsics of the SfM point clouds. First, we propose a visibility-based outlier filter, which is based on a bipartite visibility graph, to filter outliers on a coarse level. Second, we apply a geometry-based outlier filter to generate a set of fine-grained matches with a novel data-driven geometrical constraint for efficient inlier evaluation. The proposed two-stage outlier filtering framework only relies on the intrinsic information of the SfM point cloud. It is thus widely applicable to be embedded into the existing localization approaches. The experimental results on two real-world datasets demonstrate the effectiveness of the proposed two-stage outlier filtering framework for city-scale localization 
650 4 |a Journal Article 
700 1 |a Chen, Kan  |e verfasserin  |4 aut 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
700 1 |a Goesele, Michael  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yabin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 10 vom: 14. Okt., Seite 4857-4869  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:10  |g day:14  |g month:10  |g pages:4857-4869 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2910662  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 10  |b 14  |c 10  |h 4857-4869