Sparse Principal Component Analysis With Preserved Sparsity Pattern

Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3274-3285
Auteur principal: Seghouane, Abd-Krim (Auteur)
Autres auteurs: Shokouhi, Navid, Koch, Inge
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article