Sparse Principal Component Analysis With Preserved Sparsity Pattern

Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3274-3285
1. Verfasser: Seghouane, Abd-Krim (VerfasserIn)
Weitere Verfasser: Shokouhi, Navid, Koch, Inge
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM293299218
003 DE-627
005 20250224183019.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2895464  |2 doi 
028 5 2 |a pubmed25n0977.xml 
035 |a (DE-627)NLM293299218 
035 |a (NLM)30703025 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Seghouane, Abd-Krim  |e verfasserin  |4 aut 
245 1 0 |a Sparse Principal Component Analysis With Preserved Sparsity Pattern 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address this issue, several methods have been proposed for sparse PCA, all of which estimate loading vectors with few non-zero elements. However, when more than one principal component is estimated, the associated loading vectors do not possess the same sparsity pattern. Therefore, it becomes difficult to determine a small subset of variables from the original feature space that have the highest contribution in the principal components. To address this issue, an adaptive block sparse PCA method is proposed. The proposed method is guaranteed to obtain the same sparsity pattern across all principal components. Experiments show that applying the proposed sparse PCA method can help improve the performance of feature selection for image processing applications. We further demonstrate that our proposed sparse PCA method can be used to improve the performance of blind source separation for functional magnetic resonance imaging data 
650 4 |a Journal Article 
700 1 |a Shokouhi, Navid  |e verfasserin  |4 aut 
700 1 |a Koch, Inge  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 7 vom: 25. Juli, Seite 3274-3285  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:28  |g year:2019  |g number:7  |g day:25  |g month:07  |g pages:3274-3285 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2895464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 7  |b 25  |c 07  |h 3274-3285