Sparse Principal Component Analysis With Preserved Sparsity Pattern
Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3274-3285 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |