Sparse Principal Component Analysis With Preserved Sparsity Pattern

Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 7 vom: 25. Juli, Seite 3274-3285
1. Verfasser: Seghouane, Abd-Krim (VerfasserIn)
Weitere Verfasser: Shokouhi, Navid, Koch, Inge
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address this issue, several methods have been proposed for sparse PCA, all of which estimate loading vectors with few non-zero elements. However, when more than one principal component is estimated, the associated loading vectors do not possess the same sparsity pattern. Therefore, it becomes difficult to determine a small subset of variables from the original feature space that have the highest contribution in the principal components. To address this issue, an adaptive block sparse PCA method is proposed. The proposed method is guaranteed to obtain the same sparsity pattern across all principal components. Experiments show that applying the proposed sparse PCA method can help improve the performance of feature selection for image processing applications. We further demonstrate that our proposed sparse PCA method can be used to improve the performance of blind source separation for functional magnetic resonance imaging data
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2019.2895464