NLIZE : A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models

With the recent advances in deep learning, neural network models have obtained state-of-the-art performances for many linguistic tasks in natural language processing. However, this rapid progress also brings enormous challenges. The opaque nature of a neural network model leads to hard-to-debug-syst...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 05. Sept.
1. Verfasser: Liu, Shusen (VerfasserIn)
Weitere Verfasser: Li, Zhimin, Li, Tao, Srikumar, Vivek, Pascucci, Valerio, Bremer, Peer-Timo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article