NLIZE : A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models

With the recent advances in deep learning, neural network models have obtained state-of-the-art performances for many linguistic tasks in natural language processing. However, this rapid progress also brings enormous challenges. The opaque nature of a neural network model leads to hard-to-debug-syst...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 05. Sept.
1. Verfasser: Liu, Shusen (VerfasserIn)
Weitere Verfasser: Li, Zhimin, Li, Tao, Srikumar, Vivek, Pascucci, Valerio, Bremer, Peer-Timo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM288262956
003 DE-627
005 20250224020135.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2865230  |2 doi 
028 5 2 |a pubmed25n0960.xml 
035 |a (DE-627)NLM288262956 
035 |a (NLM)30188829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Shusen  |e verfasserin  |4 aut 
245 1 0 |a NLIZE  |b A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a With the recent advances in deep learning, neural network models have obtained state-of-the-art performances for many linguistic tasks in natural language processing. However, this rapid progress also brings enormous challenges. The opaque nature of a neural network model leads to hard-to-debug-systems and difficult-to-interpret mechanisms. Here, we introduce a visualization system that, through a tight yet flexible integration between visualization elements and the underlying model, allows a user to interrogate the model by perturbing the input, internal state, and prediction while observing changes in other parts of the pipeline. We use the natural language inference problem as an example to illustrate how a perturbation-driven paradigm can help domain experts assess the potential limitation of a model, probe its inner states, and interpret and form hypotheses about fundamental model mechanisms such as attention 
650 4 |a Journal Article 
700 1 |a Li, Zhimin  |e verfasserin  |4 aut 
700 1 |a Li, Tao  |e verfasserin  |4 aut 
700 1 |a Srikumar, Vivek  |e verfasserin  |4 aut 
700 1 |a Pascucci, Valerio  |e verfasserin  |4 aut 
700 1 |a Bremer, Peer-Timo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 05. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g year:2018  |g day:05  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2865230  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 05  |c 09