NLIZE : A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models
With the recent advances in deep learning, neural network models have obtained state-of-the-art performances for many linguistic tasks in natural language processing. However, this rapid progress also brings enormous challenges. The opaque nature of a neural network model leads to hard-to-debug-syst...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 05. Sept.
|
| Auteur principal: |
Liu, Shusen
(Auteur) |
| Autres auteurs: |
Li, Zhimin,
Li, Tao,
Srikumar, Vivek,
Pascucci, Valerio,
Bremer, Peer-Timo |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2018
|
| Accès à la collection: | IEEE transactions on visualization and computer graphics
|
| Sujets: | Journal Article |