Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments

We present a realtime virtual grasping algorithm to model interactions with virtual objects. Our approach is designed for multi-fingered hands and makes no assumptions about the motion of the user's hand or the virtual objects. Given a model of the virtual hand, we use machine learning and part...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 8 vom: 18. Aug., Seite 2623-2635
1. Verfasser: Tian, Hao (VerfasserIn)
Weitere Verfasser: Wang, Changbo, Manocha, Dinesh, Zhang, Xinyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286366622
003 DE-627
005 20231225051537.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2849381  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286366622 
035 |a (NLM)29994119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Hao  |e verfasserin  |4 aut 
245 1 0 |a Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a realtime virtual grasping algorithm to model interactions with virtual objects. Our approach is designed for multi-fingered hands and makes no assumptions about the motion of the user's hand or the virtual objects. Given a model of the virtual hand, we use machine learning and particle swarm optimization to automatically pre-compute stable grasp configurations for that object. The learning pre-computation step is accelerated using GPU parallelization. At runtime, we rely on the pre-computed stable grasp configurations, and dynamics/non-penetration constraints along with motion planning techniques to compute plausible looking grasps. In practice, our realtime algorithm can perform virtual grasping operations in less than 20ms for complex virtual objects, including high genus objects with holes. We have integrated our grasping algorithm with Oculus Rift HMD and Leap Motion controller and evaluated its performance for different tasks corresponding to grabbing virtual objects and placing them at arbitrary locations. Our user evaluation suggests that our virtual grasping algorithm can increase the user's realism and participation in these tasks and offers considerable benefits over prior interaction algorithms, such as pinch grasping and raycast picking 
650 4 |a Journal Article 
700 1 |a Wang, Changbo  |e verfasserin  |4 aut 
700 1 |a Manocha, Dinesh  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 25(2019), 8 vom: 18. Aug., Seite 2623-2635  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:8  |g day:18  |g month:08  |g pages:2623-2635 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2849381  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 8  |b 18  |c 08  |h 2623-2635