Learning Clip Representations for Skeleton-Based 3D Action Recognition
This paper presents a new representation of skeleton sequences for 3D action recognition. Existing methods based on hand-crafted features or recurrent neural networks cannot adequately capture the complex spatial structures and the long-term temporal dynamics of the skeleton sequences, which are ver...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 6 vom: 08. Juni, Seite 2842-2855
|
Auteur principal: |
Ke, Qiuhong
(Auteur) |
Autres auteurs: |
Bennamoun, Mohammed,
An, Senjian,
Sohel, Ferdous,
Boussaid, Farid |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2018
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Sujets: | Journal Article |