Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS2 by Pulsed Metalorganic Chemical Vapor Deposition

High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 29(2017), 15 vom: 08. Aug., Seite 6279-6288
1. Verfasser: Kalanyan, Berc (VerfasserIn)
Weitere Verfasser: Kimes, William A, Beams, Ryan, Stranick, Stephan J, Garratt, Elias, Kalish, Irina, Davydov, Albert V, Kanjolia, Ravindra K, Maslar, James E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article CVD MOCVD MoS2 metalorganic chemistry transition metal dichalcogenides
LEADER 01000naa a22002652 4500
001 NLM28201683X
003 DE-627
005 20231225032947.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.7b01367  |2 doi 
028 5 2 |a pubmed24n0940.xml 
035 |a (DE-627)NLM28201683X 
035 |a (NLM)29545674 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kalanyan, Berc  |e verfasserin  |4 aut 
245 1 0 |a Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS2 by Pulsed Metalorganic Chemical Vapor Deposition 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid precursors with minimal control over vapor phase flux and gas-phase chemistry, which are critical for scaling up laboratory processes to manufacturing settings. To address these issues, we report a new pulsed metalorganic chemical vapor deposition (MOCVD) route for MoS2 film growth in a research-grade single-wafer reactor. Using bis(tert-butylimido)-bis(dimethylamido)molybdenum and diethyl disulfide we deposit MoS2 films from ≈ 1 nm to ≈ 25 nm in thickness on SiO2/Si substrates. We show that layered 2H-MoS2 can be produced at comparatively low reaction temperatures of 591 °C at short deposition times, approximately 90 s for few-layer films. In addition to the growth studies performed on SiO2/Si, films with wafer-level uniformity are demonstrated on 50 mm quartz wafers. Process chemistry and impurity incorporation from precursors are also discussed. This low-temperature and fast process highlights the opportunities presented by metalorganic reagents in the controlled synthesis of TMDs 
650 4 |a Journal Article 
650 4 |a CVD 
650 4 |a MOCVD 
650 4 |a MoS2 
650 4 |a metalorganic chemistry 
650 4 |a transition metal dichalcogenides 
700 1 |a Kimes, William A  |e verfasserin  |4 aut 
700 1 |a Beams, Ryan  |e verfasserin  |4 aut 
700 1 |a Stranick, Stephan J  |e verfasserin  |4 aut 
700 1 |a Garratt, Elias  |e verfasserin  |4 aut 
700 1 |a Kalish, Irina  |e verfasserin  |4 aut 
700 1 |a Davydov, Albert V  |e verfasserin  |4 aut 
700 1 |a Kanjolia, Ravindra K  |e verfasserin  |4 aut 
700 1 |a Maslar, James E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 29(2017), 15 vom: 08. Aug., Seite 6279-6288  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:15  |g day:08  |g month:08  |g pages:6279-6288 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.7b01367  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 15  |b 08  |c 08  |h 6279-6288