Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near-Infrared Phototransistors

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 32 vom: 21. Aug.
1. Verfasser: Fu, Lei (VerfasserIn)
Weitere Verfasser: Wang, Feng, Wu, Bin, Wu, Nian, Huang, Wei, Wang, Hanlin, Jin, Chuanhong, Zhuang, Lin, He, Jun, Liu, Yunqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hafnium disulfide crystals near-infrared transition metal dichalcogenides ultrasensitive phototransistors van der Waals epitaxy
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
As a member of the group IVB transition metal dichalcogenides (TMDs) family, hafnium disulfide (HfS2 ) is recently predicted to exhibit higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMDs. However, the synthesis of high-quality HfS2 crystals, sparsely reported, has greatly hindered the development of this new field. Here, a facile strategy for controlled synthesis of high-quality atomic layered HfS2 crystals by van der Waals epitaxy is reported. Density functional theory calculations are applied to elucidate the systematic epitaxial growth process of the S-edge and Hf-edge. Impressively, the HfS2 back-gate field-effect transistors display a competitive mobility of 7.6 cm2 V-1 s-1 and an ultrahigh on/off ratio exceeding 108 . Meanwhile, ultrasensitive near-infrared phototransistors based on the HfS2 crystals (indirect bandgap ≈1.45 eV) exhibit an ultrahigh responsivity exceeding 3.08 × 105 A W-1 , which is 109 -fold higher than 9 × 10-5 A W-1 obtained from the multilayer MoS2 in near-infrared photodetection. Moreover, an ultrahigh photogain exceeding 4.72 × 105 and an ultrahigh detectivity exceeding 4.01 × 1012 Jones, superior to the vast majority of the reported 2D-materials-based phototransistors, imply a great promise in TMD-based 2D electronic and optoelectronic applications
Beschreibung:Date Completed 18.07.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201700439