Single and Multiple Illuminant Estimation Using Convolutional Neural Networks

In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, det...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 01. Sept., Seite 4347-4362
Auteur principal: Bianco, Simone (Auteur)
Autres auteurs: Cusano, Claudio, Schettini, Raimondo
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, determines the number of illuminants in the scene. Finally, local illuminant estimates are refined by non-linear local aggregation, resulting in a global estimate in case of single illuminant. An extensive comparison with both local and global illuminant estimation methods in the state of the art, on standard data sets with single and multiple illuminants, proves the effectiveness of our method
Description:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2713044