Single and Multiple Illuminant Estimation Using Convolutional Neural Networks
In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, det...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 01. Sept., Seite 4347-4362 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, determines the number of illuminants in the scene. Finally, local illuminant estimates are refined by non-linear local aggregation, resulting in a global estimate in case of single illuminant. An extensive comparison with both local and global illuminant estimation methods in the state of the art, on standard data sets with single and multiple illuminants, proves the effectiveness of our method |
---|---|
Beschreibung: | Date Completed 30.07.2018 Date Revised 30.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2017.2713044 |