Single and Multiple Illuminant Estimation Using Convolutional Neural Networks

In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, det...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 01. Sept., Seite 4347-4362
1. Verfasser: Bianco, Simone (VerfasserIn)
Weitere Verfasser: Cusano, Claudio, Schettini, Raimondo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM272796824
003 DE-627
005 20231224235640.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2713044  |2 doi 
028 5 2 |a pubmed24n0909.xml 
035 |a (DE-627)NLM272796824 
035 |a (NLM)28600246 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bianco, Simone  |e verfasserin  |4 aut 
245 1 0 |a Single and Multiple Illuminant Estimation Using Convolutional Neural Networks 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a three-stage method for the estimation of the color of the illuminant in RAW images. The first stage uses a convolutional neural network that has been specially designed to produce multiple local estimates of the illuminant. The second stage, given the local estimates, determines the number of illuminants in the scene. Finally, local illuminant estimates are refined by non-linear local aggregation, resulting in a global estimate in case of single illuminant. An extensive comparison with both local and global illuminant estimation methods in the state of the art, on standard data sets with single and multiple illuminants, proves the effectiveness of our method 
650 4 |a Journal Article 
700 1 |a Cusano, Claudio  |e verfasserin  |4 aut 
700 1 |a Schettini, Raimondo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 9 vom: 01. Sept., Seite 4347-4362  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:9  |g day:01  |g month:09  |g pages:4347-4362 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2713044  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 9  |b 01  |c 09  |h 4347-4362