Reaction Mechanisms of the Atomic Layer Deposition of Tin Oxide Thin Films Using Tributyltin Ethoxide and Ozone
Uniform and conformal deposition of tin oxide thin films is important for several applications in electronics, gas sensing, and transparent conducting electrodes. Thermal atomic layer deposition (ALD) is often best suited for these applications, but its implementation requires a mechanistic understa...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 24 vom: 20. Juni, Seite 5998-6004 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | Uniform and conformal deposition of tin oxide thin films is important for several applications in electronics, gas sensing, and transparent conducting electrodes. Thermal atomic layer deposition (ALD) is often best suited for these applications, but its implementation requires a mechanistic understanding of the initial nucleation and subsequent ALD processes. To this end, in situ FTIR and ex situ XPS have been used to explore the ALD of tin oxide films using tributyltin ethoxide and ozone on an OH-terminated, SiO2-passivated Si(111) substrate. Direct chemisorption of tributyltin ethoxide on surface OH groups and clear evidence that subsequent ligand exchange are obtained, providing mechanistic insight. Upon ozone pulse, the butyl groups react with ozone, forming surface carbonate and formate. The subsequent tributyltin ethoxide pulse removes the carbonate and formate features with the appearance of the bands for CH stretching and bending modes of the precursor butyl ligands. This ligand-exchange behavior is repeated for subsequent cycles, as is characteristic of ALD processes, and is clearly observed for deposition temperatures of 200 and 300 °C. On the basis of the in situ vibrational data, a reaction mechanism for the ALD process of tributyltin ethoxide and ozone is presented, whereby ligands are fully eliminated. Complementary ex situ XPS depth profiles confirm that the bulk of the films is carbon-free, that is, formate and carbonate are not incorporated into the film during the deposition process, and that good-quality SnOx films are produced. Furthermore, the process was scaled up in a cross-flow reactor at 225 °C, which allowed the determination of the growth rate (0.62 Å/cycle) and confirmed a self-limiting ALD growth at 225 and 268 °C. An analysis of the temperature-dependence data reveals that growth rate increases linearly between 200 and 300 °C |
---|---|
Beschreibung: | Date Completed 16.07.2018 Date Revised 16.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b00716 |