Learning from Weak and Noisy Labels for Semantic Segmentation

A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites suc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 15. März, Seite 486-500
1. Verfasser: Zhiwu Lu (VerfasserIn)
Weitere Verfasser: Zhenyong Fu, Tao Xiang, Peng Han, Liwei Wang, Xin Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM26825298X
003 DE-627
005 20231224222318.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2552172  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM26825298X 
035 |a (NLM)28113885 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhiwu Lu  |e verfasserin  |4 aut 
245 1 0 |a Learning from Weak and Noisy Labels for Semantic Segmentation 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2018 
500 |a Date Revised 20.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L1-optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L1-optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhenyong Fu  |e verfasserin  |4 aut 
700 1 |a Tao Xiang  |e verfasserin  |4 aut 
700 1 |a Peng Han  |e verfasserin  |4 aut 
700 1 |a Liwei Wang  |e verfasserin  |4 aut 
700 1 |a Xin Gao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 3 vom: 15. März, Seite 486-500  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:3  |g day:15  |g month:03  |g pages:486-500 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2552172  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 3  |b 15  |c 03  |h 486-500