Learning from Weak and Noisy Labels for Semantic Segmentation

A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites suc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 15. März, Seite 486-500
1. Verfasser: Zhiwu Lu (VerfasserIn)
Weitere Verfasser: Zhenyong Fu, Tao Xiang, Peng Han, Liwei Wang, Xin Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't