Learning from Weak and Noisy Labels for Semantic Segmentation

A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites suc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 3 vom: 15. März, Seite 486-500
1. Verfasser: Zhiwu Lu (VerfasserIn)
Weitere Verfasser: Zhenyong Fu, Tao Xiang, Peng Han, Liwei Wang, Xin Gao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:A weakly supervised semantic segmentation (WSSS) method aims to learn a segmentation model from weak (image-level) as opposed to strong (pixel-level) labels. By avoiding the tedious pixel-level annotation process, it can exploit the unlimited supply of user-tagged images from media-sharing sites such as Flickr for large scale applications. However, these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels. In this work, we cast the WSSS problem into a label noise reduction problem. Specifically, after segmenting each image into a set of superpixels, the weak and potentially noisy image-level labels are propagated to the superpixel level resulting in highly noisy labels; the key to semantic segmentation is thus to identify and correct the superpixel noisy labels. To this end, a novel L1-optimisation based sparse learning model is formulated to directly and explicitly detect noisy labels. To solve the L1-optimisation problem, we further develop an efficient learning algorithm by introducing an intermediate labelling variable. Extensive experiments on three benchmark datasets show that our method yields state-of-the-art results given noise-free labels, whilst significantly outperforming the existing methods when the weak labels are also noisy
Beschreibung:Date Completed 20.09.2018
Date Revised 20.09.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2016.2552172