Robust Low-Rank Matrix Factorization Under General Mixture Noise Distributions
Many computer vision problems can be posed as learning a low-dimensional subspace from high-dimensional data. The low rank matrix factorization (LRMF) represents a commonly utilized subspace learning strategy. Most of the current LRMF techniques are constructed on the optimization problems using L1-...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4677-4690 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2016
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |