Robust Low-Rank Matrix Factorization Under General Mixture Noise Distributions
Many computer vision problems can be posed as learning a low-dimensional subspace from high-dimensional data. The low rank matrix factorization (LRMF) represents a commonly utilized subspace learning strategy. Most of the current LRMF techniques are constructed on the optimization problems using L1-...
| Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4677-4690 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2016
|
| Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Sujets: | Journal Article |
| Accès en ligne |
Volltext |