Robust Low-Rank Matrix Factorization Under General Mixture Noise Distributions

Many computer vision problems can be posed as learning a low-dimensional subspace from high-dimensional data. The low rank matrix factorization (LRMF) represents a commonly utilized subspace learning strategy. Most of the current LRMF techniques are constructed on the optimization problems using L1-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 02. Okt., Seite 4677-4690
1. Verfasser: Xiangyong Cao (VerfasserIn)
Weitere Verfasser: Qian Zhao, Deyu Meng, Yang Chen, Zongben Xu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262714337
003 DE-627
005 20231224202342.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2593343  |2 doi 
028 5 2 |a pubmed24n0875.xml 
035 |a (DE-627)NLM262714337 
035 |a (NLM)27448358 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiangyong Cao  |e verfasserin  |4 aut 
245 1 0 |a Robust Low-Rank Matrix Factorization Under General Mixture Noise Distributions 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many computer vision problems can be posed as learning a low-dimensional subspace from high-dimensional data. The low rank matrix factorization (LRMF) represents a commonly utilized subspace learning strategy. Most of the current LRMF techniques are constructed on the optimization problems using L1-norm and L2-norm losses, which mainly deal with the Laplace and Gaussian noises, respectively. To make LRMF capable of adapting more complex noise, this paper proposes a new LRMF model by assuming noise as mixture of exponential power (MoEP) distributions and then proposes a penalized MoEP (PMoEP) model by combining the penalized likelihood method with MoEP distributions. Such setting facilitates the learned LRMF model capable of automatically fitting the real noise through MoEP distributions. Each component in this mixture distribution is adapted from a series of preliminary superor sub-Gaussian candidates. Moreover, by facilitating the local continuity of noise components, we embed Markov random field into the PMoEP model and then propose the PMoEP-MRF model. A generalized expectation maximization (GEM) algorithm and a variational GEM algorithm are designed to infer all parameters involved in the proposed PMoEP and the PMoEPMRF model, respectively. The superiority of our methods is demonstrated by extensive experiments on synthetic data, face modeling, hyperspectral image denoising, and background subtraction 
650 4 |a Journal Article 
700 1 |a Qian Zhao  |e verfasserin  |4 aut 
700 1 |a Deyu Meng  |e verfasserin  |4 aut 
700 1 |a Yang Chen  |e verfasserin  |4 aut 
700 1 |a Zongben Xu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 10 vom: 02. Okt., Seite 4677-4690  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:10  |g day:02  |g month:10  |g pages:4677-4690 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2593343  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 10  |b 02  |c 10  |h 4677-4690