Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging

Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a bette...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 05. Sept., Seite 4145-57
Auteur principal: Lee, Chul (Auteur)
Autres auteurs: Lam, Edmund Y
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article