Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging

Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a bette...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 05. Sept., Seite 4145-57
1. Verfasser: Lee, Chul (VerfasserIn)
Weitere Verfasser: Lam, Edmund Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a better approximation to the matrix rank than the nuclear norm, exploiting a priori target rank information about the problem in rank minimization. In this paper, we propose a computationally efficient truncated nuclear norm minimization algorithm for matrix completion, which we call TNNM-ALM. We reformulate the original optimization problem by introducing slack variables and considering noise in the observation. The central contribution of this paper is to solve it efficiently via the augmented Lagrange multiplier (ALM) method, where the optimization variables are updated by closed-form solutions. We apply the proposed TNNM-ALM algorithm to ghost-free high dynamic range imaging by exploiting the low-rank structure of irradiance maps from low dynamic range images. Experimental results on both synthetic and real visual data show that the proposed algorithm achieves significantly lower reconstruction errors and superior robustness against noise than the conventional approaches, while providing substantial improvement in speed, thereby applicable to a wide range of imaging applications
Beschreibung:Date Completed 23.05.2017
Date Revised 23.05.2017
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2016.2585047