Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging

Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a bette...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 05. Sept., Seite 4145-57
1. Verfasser: Lee, Chul (VerfasserIn)
Weitere Verfasser: Lam, Edmund Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM26183990X
003 DE-627
005 20231224200431.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2585047  |2 doi 
028 5 2 |a pubmed24n0872.xml 
035 |a (DE-627)NLM26183990X 
035 |a (NLM)27352392 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Chul  |e verfasserin  |4 aut 
245 1 0 |a Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2017 
500 |a Date Revised 23.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a better approximation to the matrix rank than the nuclear norm, exploiting a priori target rank information about the problem in rank minimization. In this paper, we propose a computationally efficient truncated nuclear norm minimization algorithm for matrix completion, which we call TNNM-ALM. We reformulate the original optimization problem by introducing slack variables and considering noise in the observation. The central contribution of this paper is to solve it efficiently via the augmented Lagrange multiplier (ALM) method, where the optimization variables are updated by closed-form solutions. We apply the proposed TNNM-ALM algorithm to ghost-free high dynamic range imaging by exploiting the low-rank structure of irradiance maps from low dynamic range images. Experimental results on both synthetic and real visual data show that the proposed algorithm achieves significantly lower reconstruction errors and superior robustness against noise than the conventional approaches, while providing substantial improvement in speed, thereby applicable to a wide range of imaging applications 
650 4 |a Journal Article 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 9 vom: 05. Sept., Seite 4145-57  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:9  |g day:05  |g month:09  |g pages:4145-57 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2585047  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 9  |b 05  |c 09  |h 4145-57