Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging

Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a bette...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 9 vom: 05. Sept., Seite 4145-57
1. Verfasser: Lee, Chul (VerfasserIn)
Weitere Verfasser: Lam, Edmund Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article