Map-Based Probabilistic Visual Self-Localization

Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for wh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 4 vom: 09. Apr., Seite 652-65
1. Verfasser: Brubaker, Marcus A (VerfasserIn)
Weitere Verfasser: Geiger, Andreas, Urtasun, Raquel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM258259515
003 DE-627
005 20231224184621.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2453975  |2 doi 
028 5 2 |a pubmed24n0860.xml 
035 |a (DE-627)NLM258259515 
035 |a (NLM)26959671 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Brubaker, Marcus A  |e verfasserin  |4 aut 
245 1 0 |a Map-Based Probabilistic Visual Self-Localization 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2016 
500 |a Date Revised 10.03.2016 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4 m on average after 52 seconds of driving on maps which contain more than 2,150 km of drivable roads 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Geiger, Andreas  |e verfasserin  |4 aut 
700 1 |a Urtasun, Raquel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 4 vom: 09. Apr., Seite 652-65  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:4  |g day:09  |g month:04  |g pages:652-65 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2453975  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 4  |b 09  |c 04  |h 652-65