Map-Based Probabilistic Visual Self-Localization

Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for wh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 4 vom: 09. Apr., Seite 652-65
1. Verfasser: Brubaker, Marcus A (VerfasserIn)
Weitere Verfasser: Geiger, Andreas, Urtasun, Raquel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4 m on average after 52 seconds of driving on maps which contain more than 2,150 km of drivable roads
Beschreibung:Date Completed 12.07.2016
Date Revised 10.03.2016
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2015.2453975