Video tracking using learned hierarchical features
In this paper, we propose an approach to learn hierarchical features for visual object tracking. First, we offline learn features robust to diverse motion patterns from auxiliary video sequences. The hierarchical features are learned via a two-layer convolutional neural network. Embedding the tempor...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 4 vom: 16. Apr., Seite 1424-35 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2015
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article Research Support, Non-U.S. Gov't |
Accès en ligne |
Volltext |