Video tracking using learned hierarchical features

In this paper, we propose an approach to learn hierarchical features for visual object tracking. First, we offline learn features robust to diverse motion patterns from auxiliary video sequences. The hierarchical features are learned via a two-layer convolutional neural network. Embedding the tempor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 4 vom: 09. Apr., Seite 1424-35
1. Verfasser: Li Wang (VerfasserIn)
Weitere Verfasser: Ting Liu, Gang Wang, Kap Luk Chan, Qingxiong Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM24641572X
003 DE-627
005 20231224143020.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2403231  |2 doi 
028 5 2 |a pubmed24n0821.xml 
035 |a (DE-627)NLM24641572X 
035 |a (NLM)25700445 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li Wang  |e verfasserin  |4 aut 
245 1 0 |a Video tracking using learned hierarchical features 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.04.2015 
500 |a Date Revised 10.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose an approach to learn hierarchical features for visual object tracking. First, we offline learn features robust to diverse motion patterns from auxiliary video sequences. The hierarchical features are learned via a two-layer convolutional neural network. Embedding the temporal slowness constraint in the stacked architecture makes the learned features robust to complicated motion transformations, which is important for visual object tracking. Then, given a target video sequence, we propose a domain adaptation module to online adapt the pre-learned features according to the specific target object. The adaptation is conducted in both layers of the deep feature learning module so as to include appearance information of the specific target object. As a result, the learned hierarchical features can be robust to both complicated motion transformations and appearance changes of target objects. We integrate our feature learning algorithm into three tracking methods. Experimental results demonstrate that significant improvement can be achieved using our learned hierarchical features, especially on video sequences with complicated motion transformations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ting Liu  |e verfasserin  |4 aut 
700 1 |a Gang Wang  |e verfasserin  |4 aut 
700 1 |a Kap Luk Chan  |e verfasserin  |4 aut 
700 1 |a Qingxiong Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 4 vom: 09. Apr., Seite 1424-35  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:4  |g day:09  |g month:04  |g pages:1424-35 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2403231  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 4  |b 09  |c 04  |h 1424-35