DPFrag : trainable stroke fragmentation based on dynamic programming

Many computer graphics applications must fragment freehand curves into sets of prespecified geometric primitives. For example, sketch recognition typically converts hand-drawn strokes into line and arc segments and then combines these primitives into meaningful symbols for recognizing drawings. Howe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1997. - 33(2013), 5 vom: 10. Sept., Seite 59-67
1. Verfasser: Tümen, R Sinan (VerfasserIn)
Weitere Verfasser: Sezgin, T Metin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM238058573
003 DE-627
005 20250217002823.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/MCG.2012.124  |2 doi 
028 5 2 |a pubmed25n0793.xml 
035 |a (DE-627)NLM238058573 
035 |a (NLM)24808082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tümen, R Sinan  |e verfasserin  |4 aut 
245 1 0 |a DPFrag  |b trainable stroke fragmentation based on dynamic programming 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 08.05.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many computer graphics applications must fragment freehand curves into sets of prespecified geometric primitives. For example, sketch recognition typically converts hand-drawn strokes into line and arc segments and then combines these primitives into meaningful symbols for recognizing drawings. However, current fragmentation methods' shortcomings make them impractical. For example, they require manual tuning, require excessive computational resources, or produce suboptimal solutions that rely on local decisions. DPFrag is an efficient, globally optimal fragmentation method that learns segmentation parameters from data and produces fragmentations by combining primitive recognizers in a dynamic-programming framework. The fragmentation is fast and doesn't require laborious and tedious parameter tuning. In experiments, it beat state-of-the-art methods on standard databases with only a handful of labeled examples 
650 4 |a Journal Article 
700 1 |a Sezgin, T Metin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE computer graphics and applications  |d 1997  |g 33(2013), 5 vom: 10. Sept., Seite 59-67  |w (DE-627)NLM098172794  |x 1558-1756  |7 nnns 
773 1 8 |g volume:33  |g year:2013  |g number:5  |g day:10  |g month:09  |g pages:59-67 
856 4 0 |u http://dx.doi.org/10.1109/MCG.2012.124  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2013  |e 5  |b 10  |c 09  |h 59-67