DPFrag : trainable stroke fragmentation based on dynamic programming

Many computer graphics applications must fragment freehand curves into sets of prespecified geometric primitives. For example, sketch recognition typically converts hand-drawn strokes into line and arc segments and then combines these primitives into meaningful symbols for recognizing drawings. Howe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1997. - 33(2013), 5 vom: 10. Sept., Seite 59-67
1. Verfasser: Tümen, R Sinan (VerfasserIn)
Weitere Verfasser: Sezgin, T Metin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Many computer graphics applications must fragment freehand curves into sets of prespecified geometric primitives. For example, sketch recognition typically converts hand-drawn strokes into line and arc segments and then combines these primitives into meaningful symbols for recognizing drawings. However, current fragmentation methods' shortcomings make them impractical. For example, they require manual tuning, require excessive computational resources, or produce suboptimal solutions that rely on local decisions. DPFrag is an efficient, globally optimal fragmentation method that learns segmentation parameters from data and produces fragmentations by combining primitive recognizers in a dynamic-programming framework. The fragmentation is fast and doesn't require laborious and tedious parameter tuning. In experiments, it beat state-of-the-art methods on standard databases with only a handful of labeled examples
Beschreibung:Date Completed 30.03.2015
Date Revised 08.05.2014
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1558-1756
DOI:10.1109/MCG.2012.124