Reducing the cytotoxity of poly(amidoamine) dendrimers by modification of a single layer of carboxybetaine
The surface primary amines of generation five poly(amido amine) (G5 PAMAM) dendrimer were modified by different amounts of carboxybetaine acrylamide (CBAA). As a result, the fully modified molecules (CBAA-PAMAM-20, obtained from the 20:1 molar ratio of CBAA molecules to amino groups in modification...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 28 vom: 16. Juli, Seite 8914-21 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Dendrimers PAMAM Starburst Proteins Betaine 3SCV180C9W |
Zusammenfassung: | The surface primary amines of generation five poly(amido amine) (G5 PAMAM) dendrimer were modified by different amounts of carboxybetaine acrylamide (CBAA). As a result, the fully modified molecules (CBAA-PAMAM-20, obtained from the 20:1 molar ratio of CBAA molecules to amino groups in modification solution) show excellent compatibility with protein and cells. CBAA-PAMAM-20 and fibrinogen (Fg) could coexist in solution without forming aggregation, indicating very weak interaction force between CBAA-PAMAM-20 and fibrinogen. CBAA-PAMAM-20 exhibits almost undetectable hemolytic activity, while other partially modified ones cause severe hemolysis and fibrinogen aggregation. Furthermore, the membrane of human umbilical vascular endothelial cell (HUVEC) remains intact after 24 h incubation with CBAA-PAMAM-20. The cytotoxicity assay of HUVEC cells and KB cells also showed that the CBAA-PAMAM-20 was not cytotoxic up to a 2 mg/mL concentration (>90% cell viability). In short, a thin compact layer of zwitterionic carboxybetaine could reduce the cytotoxicity of PAMAM through minimizing the interaction with protein and cell membranes, which suggest that the carboxybetaine-coated PAMAM could be a useful platform for biocompatible carriers to load contrast agents and drugs |
---|---|
Beschreibung: | Date Completed 05.02.2014 Date Revised 16.07.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la400623s |