Stability of proteins inside a hydrophobic cavity

We study the effects of confinement and hydrophobicity of a spherical cavity on the structural and thermal stability of proteins in the framework of a hydrophobic-polar (HP) lattice model. We observe that a neutral confinement stabilizes the folded state of the protein by eliminating many of the ope...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 29(2013), 28 vom: 16. Juli, Seite 8922-8
1. Verfasser: Radhakrishna, Mithun (VerfasserIn)
Weitere Verfasser: Grimaldi, Joseph, Belfort, Georges, Kumar, Sanat K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Methacrylates Proteins SBA-15 methacrylic acid 1CS02G8656 Silicon Dioxide 7631-86-9 Alcohol Dehydrogenase EC 1.1.1.1
Beschreibung
Zusammenfassung:We study the effects of confinement and hydrophobicity of a spherical cavity on the structural and thermal stability of proteins in the framework of a hydrophobic-polar (HP) lattice model. We observe that a neutral confinement stabilizes the folded state of the protein by eliminating many of the open-chain conformations of the unfolded state. Hydrophobic confinement always destabilizes the protein because of protein-surface interactions. However, for moderate surface hydrophobicities, the protein remains stabilized relative to its state in free solution because of the dominance of entropic effects. These results are consistent with our experimental findings of (a) enhanced activity of alcohol dehydrogenase (ADH) when immobilized inside the essentially cylindrical pores of hydrophilic mesoporous silica (SBA-15) and (b) unaffected activity when immobilized inside weakly hydrophobic pores of methacrylate resin compared to its activity in free solution. In the same vein, our predictions are also consistent with the behavior of lysozyme and myoglobin in hydrophilic and hydrophobic SBA-15, which show qualitatively the same trends. Apparently, our results have validity across these very different enzymes, and we therefore suggest that confinement can be used to selectively improve enzyme performance
Beschreibung:Date Completed 05.02.2014
Date Revised 16.07.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la4014784