Surface and curve skeletonization of large 3D models on the GPU

We present a GPU-based framework for extracting surface and curve skeletons of 3D shapes represented as large polygonal meshes. We use an efficient parallel search strategy to compute point-cloud skeletons and their distance and feature transforms (FTs) with user-defined precision. We regularize ske...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 6 vom: 18. Juni, Seite 1495-508
1. Verfasser: Jalba, Andrei C (VerfasserIn)
Weitere Verfasser: Kustra, Jacek, Telea, Alexandru C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a GPU-based framework for extracting surface and curve skeletons of 3D shapes represented as large polygonal meshes. We use an efficient parallel search strategy to compute point-cloud skeletons and their distance and feature transforms (FTs) with user-defined precision. We regularize skeletons by a new GPU-based geodesic tracing technique which is orders of magnitude faster and more accurate than comparable techniques. We reconstruct the input surface from skeleton clouds using a fast and accurate image-based method. We also show how to reconstruct the skeletal manifold structure as a polygon mesh and the curve skeleton as a polyline. Compared to recent skeletonization methods, our approach offers two orders of magnitude speed-up, high-precision, and low-memory footprints. We demonstrate our framework on several complex 3D models
Beschreibung:Date Completed 15.11.2013
Date Revised 19.04.2013
published: Print
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2012.212