An efficient hidden variable approach to minimal-case camera motion estimation

In this paper, we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation, most notably the so-called five-point relative orientation problem and the six-point focal-length problem. Our approach is based on the hidden variable technique used in solvin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 12 vom: 20. Dez., Seite 2303-14
1. Verfasser: Hartley, Richard (VerfasserIn)
Weitere Verfasser: Li, Hongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM215393821
003 DE-627
005 20231224025441.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0718.xml 
035 |a (DE-627)NLM215393821 
035 |a (NLM)22331858 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hartley, Richard  |e verfasserin  |4 aut 
245 1 3 |a An efficient hidden variable approach to minimal-case camera motion estimation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2013 
500 |a Date Revised 01.02.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation, most notably the so-called five-point relative orientation problem and the six-point focal-length problem. Our approach is based on the hidden variable technique used in solving multivariate polynomial systems. The resulting algorithm is conceptually simple, which involves a relaxation which replaces monomials in all but one of the variables to reduce the problem to the solution of sets of linear equations, as well as solving a polynomial eigenvalue problem (polyeig). To efficiently find the polynomial eigenvalues, we make novel use of several numeric techniques, which include quotient-free Gaussian elimination, Levinson-Durbin iteration, and also a dedicated root-polishing procedure. We have tested the approach on different minimal cases and extensions, with satisfactory results obtained. Both the executables and source codes of the proposed algorithms are made freely downloadable 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Hongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 12 vom: 20. Dez., Seite 2303-14  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:12  |g day:20  |g month:12  |g pages:2303-14 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 12  |b 20  |c 12  |h 2303-14