An efficient hidden variable approach to minimal-case camera motion estimation

In this paper, we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation, most notably the so-called five-point relative orientation problem and the six-point focal-length problem. Our approach is based on the hidden variable technique used in solvin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 12 vom: 20. Dez., Seite 2303-14
1. Verfasser: Hartley, Richard (VerfasserIn)
Weitere Verfasser: Li, Hongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we present an efficient new approach for solving two-view minimal-case problems in camera motion estimation, most notably the so-called five-point relative orientation problem and the six-point focal-length problem. Our approach is based on the hidden variable technique used in solving multivariate polynomial systems. The resulting algorithm is conceptually simple, which involves a relaxation which replaces monomials in all but one of the variables to reduce the problem to the solution of sets of linear equations, as well as solving a polynomial eigenvalue problem (polyeig). To efficiently find the polynomial eigenvalues, we make novel use of several numeric techniques, which include quotient-free Gaussian elimination, Levinson-Durbin iteration, and also a dedicated root-polishing procedure. We have tested the approach on different minimal cases and extensions, with satisfactory results obtained. Both the executables and source codes of the proposed algorithms are made freely downloadable
Beschreibung:Date Completed 28.05.2013
Date Revised 01.02.2013
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539