|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM211011886 |
003 |
DE-627 |
005 |
20231224012718.0 |
007 |
tu |
008 |
231224s1981 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0703.xml
|
035 |
|
|
|a (DE-627)NLM211011886
|
035 |
|
|
|a (NLM)21868930
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Young, T Y
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Statistical pattern classification with binary variables
|
264 |
|
1 |
|c 1981
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 12.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Binary random variables are regarded as random vectors in a binary-field (modulo-2) linear vector space. A characteristic function is defined and related results derived using this formulation. Minimax estimation of probability distributions using an entropy criterion is investigated, which leads to an A-distribution and bilinear discriminant functions. Nonparametric classification approaches using Hamming distances and their asymptotic properties are discussed. Experimental results are presented
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, P S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rondon, R J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 3(1981), 2 vom: 01. Feb., Seite 155-63
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:3
|g year:1981
|g number:2
|g day:01
|g month:02
|g pages:155-63
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 3
|j 1981
|e 2
|b 01
|c 02
|h 155-63
|