Statistical pattern classification with binary variables

Binary random variables are regarded as random vectors in a binary-field (modulo-2) linear vector space. A characteristic function is defined and related results derived using this formulation. Minimax estimation of probability distributions using an entropy criterion is investigated, which leads to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 3(1981), 2 vom: 01. Feb., Seite 155-63
1. Verfasser: Young, T Y (VerfasserIn)
Weitere Verfasser: Liu, P S, Rondon, R J
Format: Aufsatz
Sprache:English
Veröffentlicht: 1981
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Binary random variables are regarded as random vectors in a binary-field (modulo-2) linear vector space. A characteristic function is defined and related results derived using this formulation. Minimax estimation of probability distributions using an entropy criterion is investigated, which leads to an A-distribution and bilinear discriminant functions. Nonparametric classification approaches using Hamming distances and their asymptotic properties are discussed. Experimental results are presented
Beschreibung:Date Completed 02.10.2012
Date Revised 12.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539