FINE : fisher information nonparametric embedding

We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward euclidean representation exists. In this paper, we propose using the properties of information geometry and statistical manifolds in order to define similarities between data se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 11 vom: 06. Nov., Seite 2093-8
1. Verfasser: Carter, Kevin M (VerfasserIn)
Weitere Verfasser: Raich, Raviv, Finn, William G, Hero, Alfred O 3rd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM191435384
003 DE-627
005 20250210192534.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.67  |2 doi 
028 5 2 |a pubmed25n0638.xml 
035 |a (DE-627)NLM191435384 
035 |a (NLM)19762935 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Carter, Kevin M  |e verfasserin  |4 aut 
245 1 0 |a FINE  |b fisher information nonparametric embedding 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.12.2009 
500 |a Date Revised 18.09.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward euclidean representation exists. In this paper, we propose using the properties of information geometry and statistical manifolds in order to define similarities between data sets using the Fisher information distance. We will show that this metric can be approximated using entirely nonparametric methods, as the parameterization and geometry of the manifold is generally unknown. Furthermore, by using multidimensional scaling methods, we are able to reconstruct the statistical manifold in a low-dimensional euclidean space; enabling effective learning on the data. As a whole, we refer to our framework as Fisher Information Nonparametric Embedding (FINE) and illustrate its uses on practical problems, including a biomedical application and document classification 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Raich, Raviv  |e verfasserin  |4 aut 
700 1 |a Finn, William G  |e verfasserin  |4 aut 
700 1 |a Hero, Alfred O  |c 3rd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 31(2009), 11 vom: 06. Nov., Seite 2093-8  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:11  |g day:06  |g month:11  |g pages:2093-8 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.67  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 11  |b 06  |c 11  |h 2093-8