FINE : fisher information nonparametric embedding

We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward euclidean representation exists. In this paper, we propose using the properties of information geometry and statistical manifolds in order to define similarities between data se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 11 vom: 06. Nov., Seite 2093-8
1. Verfasser: Carter, Kevin M (VerfasserIn)
Weitere Verfasser: Raich, Raviv, Finn, William G, Hero, Alfred O 3rd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward euclidean representation exists. In this paper, we propose using the properties of information geometry and statistical manifolds in order to define similarities between data sets using the Fisher information distance. We will show that this metric can be approximated using entirely nonparametric methods, as the parameterization and geometry of the manifold is generally unknown. Furthermore, by using multidimensional scaling methods, we are able to reconstruct the statistical manifold in a low-dimensional euclidean space; enabling effective learning on the data. As a whole, we refer to our framework as Fisher Information Nonparametric Embedding (FINE) and illustrate its uses on practical problems, including a biomedical application and document classification
Beschreibung:Date Completed 09.12.2009
Date Revised 18.09.2009
published: Print
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2009.67