Temperature-induced protein release from water-in-oil-in-water double emulsions

A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion glo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 14 vom: 15. Juli, Seite 7154-60
1. Verfasser: Rojas, Edith C (VerfasserIn)
Weitere Verfasser: Staton, Jennifer A, John, Vijay T, Papadopoulos, Kyriakos D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Alkanes Emulsions Oils Water 059QF0KO0R Serum Albumin, Bovine 27432CM55Q mehr... n-hexadecane F8Z00SHP6Q
Beschreibung
Zusammenfassung:A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W 1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 degrees C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein
Beschreibung:Date Completed 15.08.2008
Date Revised 12.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la703974n