Principal surfaces from unsupervised kernel regression

We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 9 vom: 08. Sept., Seite 1379-91
1. Verfasser: Meinicke, Peter (VerfasserIn)
Weitere Verfasser: Klanke, Stefan, Memisevic, Roland, Ritter, Helge
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM157866548
003 DE-627
005 20231223081045.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0526.xml 
035 |a (DE-627)NLM157866548 
035 |a (NLM)16173183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meinicke, Peter  |e verfasserin  |4 aut 
245 1 0 |a Principal surfaces from unsupervised kernel regression 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.10.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practical solution to the model selection problem because all parameters can be estimated by leave-one-out cross-validation without additional computational cost. In addition, our approach allows for a convenient incorporation of nonlinear spectral methods for parameter initialization, beyond classical initializations based on linear PCA. Furthermore, it shows a simple way to fit principal surfaces in general feature spaces, beyond the usual data space setup. The experimental results illustrate these convenient features on simulated and real data 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Klanke, Stefan  |e verfasserin  |4 aut 
700 1 |a Memisevic, Roland  |e verfasserin  |4 aut 
700 1 |a Ritter, Helge  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 9 vom: 08. Sept., Seite 1379-91  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:9  |g day:08  |g month:09  |g pages:1379-91 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 9  |b 08  |c 09  |h 1379-91