Principal surfaces from unsupervised kernel regression

We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 9 vom: 08. Sept., Seite 1379-91
1. Verfasser: Meinicke, Peter (VerfasserIn)
Weitere Verfasser: Klanke, Stefan, Memisevic, Roland, Ritter, Helge
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practical solution to the model selection problem because all parameters can be estimated by leave-one-out cross-validation without additional computational cost. In addition, our approach allows for a convenient incorporation of nonlinear spectral methods for parameter initialization, beyond classical initializations based on linear PCA. Furthermore, it shows a simple way to fit principal surfaces in general feature spaces, beyond the usual data space setup. The experimental results illustrate these convenient features on simulated and real data
Beschreibung:Date Completed 12.10.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539