|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM153468262 |
003 |
DE-627 |
005 |
20231223064058.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0512.xml
|
035 |
|
|
|a (DE-627)NLM153468262
|
035 |
|
|
|a (NLM)15688560
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Jian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a KPCA plus LDA
|b a complete kernel Fisher discriminant framework for feature extraction and recognition
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.03.2005
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel Fisher discriminant analysis (CKFD) algorithm. CKFD can be used to carry out discriminant analysis in "double discriminant subspaces." The fact that, it can make full use of two kinds of discriminant information, regular and irregular, makes CKFD a more powerful discriminator. The proposed algorithm was tested and evaluated using the FERET face database and the CENPARMI handwritten numeral database. The experimental results show that CKFD outperforms other KFD algorithms
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Validation Study
|
700 |
1 |
|
|a Frangi, Alejandro F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jing-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Zhong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 27(2005), 2 vom: 18. Feb., Seite 230-44
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2005
|g number:2
|g day:18
|g month:02
|g pages:230-44
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2005
|e 2
|b 18
|c 02
|h 230-44
|